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Abstract. The hydrodynamics of a torus is important on two counts: firstly, most stiff or semiflexible
ring polymers, e.g. DNA miniplasmids are modeled as a torus and secondly, it has the simplest geometry
which can describe self propelled organisms (particles). In the present work, the hydrodynamics of a torus
rotating about its centerline is studied. Analytical expression for the velocity of a force free rotating torus
is derived. It is found that a rotating torus translates with a velocity which is proportional to its internal
velocity and to the square of the slenderness ratio, ε, similar to most low Reynolds number swimmers. The
motion of a torus along a cylindrical track is studied numerically and it is observed that a force free torus
changes its direction of motion (from a propelled state (weak wall effects) to a rolling state (strong wall
effects)) as the diameter of the inner circular cylinder is increased. The rolling velocity is found to depend
only on ε when the inner cylinder diameter approaches that of the torus.

PACS. 47.85.Dh Hydrodynamics, hydraulics, hydrostatics

1 Introduction

The list of models suggested to explain swimming at low
Reynolds number is ever increasing, now spanning almost
five decades [1–6]. The peculiarity of low Reynolds num-
ber flow lies in its quasi-static, time reversible nature,
which renders impossible any reciprocal motion to pro-
pel the organism. This means that only certain types of
shape changes that are non-reciprocal and break the time-
reversal symmetry can make the microorganism move, and
most suggested models in the literature take this into ac-
count [4–6]. Purcell [3] in his famous article on life at
low Reynolds number, suggests a rotating torus which
can translate as a possible mechanism of motility of liv-
ing organisms. Similar recommendation was discussed by
Taylor [7], although no calculations to date exist on the
propulsion velocity of such an object and its dependence
on the angular velocity about the centerline.

The other instance where a torus is encountered is the
description of stiff and semiflexible polymer rings (e.g.
DNA miniplasmids), which can be best modeled as a
torus. Recently, we [8] proposed a nanomachine, consist-
ing of a DNA mini-plasmid, which is set into rotations by
rectifying thermal fluctuations, using the ratchet effect.
In an extensive work on the hydrodynamics of a torus,
Johnson [9] studied the flow around a torus for five dif-
ferent situations: Translation along the longitudinal axis,
translation along the two transverse axes, rotation along
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Fig. 1. Hydrodynamics of a torus: (depicted hereas a mini-
plasmid) (a) Translation of a single torus, (b) A torus moving
along a cylindrical rail.

the longitudinal axis (a spinning torus), on edge rotation
and flow around an expanding torus. However, they did
not address the problem of rotation around the center-
line (Fig. 1a). There are very few studies that discuss this
problem [10], although the self-propelled characteristics
are not addressed in any of these and this forms the basis
of the present study.

Interestingly, while suggesting a torus as a possible
geometry to explain a low Reynolds number swimmer,
Taylor [7] qualitatively argues about a situation in which
a cylindrical rod threads through the hole in the torus
(Fig. 1b). Such a torus would reverse its direction and
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can possibly go from a propulsion state to a rolling kind
motion. In our recent work on a DNA miniplasmid as a
nanomachine, we [8] argue that although a DNA mini-
plasmid can self-propel itself, its effect can be nullified by
the substantial out of plane rotational diffusion prevalent
in these machines owing to their small sizes [11]. This can
be prevented though, by putting the DNA mini-plasmid
on a rail, for example a DNA threading through the cen-
terline. This is identical to a torus rotating about its cen-
terline and moving along an infinitely long cylinder. An-
alytical solutions were obtained for the case of a slender
torus moving inside a tube and the force acting on such a
torus [12,13]. However, there are no calculations to date
which address the motion of a rotating torus along a cir-
cular cylinder, and a possible reversal of direction, which
is exactly the proposed mechanism for the nanomachine
discussed by us [8].

In the present work, the hydrodynamics of a torus,
rotating about its center-line in the zero Reynolds num-
ber limit is addressed, which is the relevant flow regime
for less than micron sized objects. We construct the so-
lution to this problem to an order higher in slenderness
ratio (O(b/a)2), than that considered earlier in the litera-
ture (O(b/a)), [10]. The full velocity profile for a rotating
torus which is not allowed to translate is derived next and
the force on such a torus is determined. Analytical results
are presented in the limit of a slender torus, a limit which
is relevant in for e.g. DNA mini-plasmids [8]. Although
slender torus results are useful, especially in the case of
polymer rings, there might be instances in which the torus
thickness is of the same order as the internal radius, and
the the boundary integral method is used to numerically
solve the Stokes equation. We verify our analytical results
using the numerical scheme and then extend the calcula-
tions to the non-slender limit. The problem of a force free
torus moving along a cylindrical rod is addressed next.
The force free velocity is calculated in several regimes and
comparisons made with existing literature. The calcula-
tions are then extended to the lubrication limit.

2 Analytical solution of a rotating torus

Consider a torus with smaller diameter b and larger diam-
eter a, rotating about its centerline with an angular veloc-
ity ω in a Newtonian fluid, in the zero Reynolds number
limit (Fig. 2). In the analysis to follow, we indicate dimen-
sional quantities by a tilde. The governing equations for
the fluid are the Navier Stokes equations (continuity and
momentum),

∇̃ · ũ = 0 (1)

ρf

[
∂t̃ũ + ũ · ∇̃ũ

]
= −∇̃p̃+ µ∇̃2ũ (2)

where µ is the viscosity of the fluid. The physical quan-
tities are non-dimensionalized as follows: The lengths are
scaled by a, velocity with ωa, time by 1/ω, the stresses and
the pressure by µω. With this non-dimensionalization the
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Fig. 2. Coordinate system for the torus: Local representation
in cylindrical coordinates.

Navier Stokes equations are given by

∇ · u = 0 (3)

Re [∂tu + u · ∇u ] = −∇p+ ∇2u, (4)

where the Reynolds number Re = a2ρf/(µω). For micron
sized particles with speeds of few microns per second, the
Reynolds number is indeed very low. In this work, we con-
sider the limit of low Reynolds number, so that the Navier
Stokes equations reduce to the familiar Stokes equations

∇ · u = 0 (5)

−∇p+ ∇2u = 0. (6)

Here we use two coordinate systems (Fig. 2), the Carte-
sian (ex, ey, ez), and the cylindrical coordinate system
(ex, er, eθ). The unit vectors of the two coordinate sys-
tems are related by

ey = er cos θ + eθ sin θ (7)
ez = er sin θ − eθ cos θ. (8)

The solution for velocity can be expressed in terms of
fundamental solutions of Stokes flow like the rotlet, the
Stokeslet, the stresslet and the potential dipole [15,16].
For a rotating torus about its centerline, we assume a uni-
form distribution of rotlets of strength mex × er acting
along the center line of the torus, m is a scalar and ex is
the unit vector in the direction of the axis of symmetry of
the torus. er is the unit vector joining the center line with
any point on the surface of torus and ex×er is tangent to
the circle at point ζ = aer [10]. The dominant singularity
representing the velocity field of a “self propelled rotat-
ing torus” is expected to be the rotlet. The effect of the
Stokeslet (force singularity) and the potential dipole (a
higher order singularity) is considered later. The velocity
in terms of the rotlet is then given by

u = m
(ex × ζ) × R

R3
. (9)

Any reference point in the fluid, can be repre-
sented in cartesian coordinates (denoted with ()c) by
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X = (x, r cos θ, r sin θ)c, while the centerline of the torus
is given by ζ̃ = (0, a cosφ, a sinφ)c. Here, θ is the az-
imuthal angle in the cylindrical coordinate system for
any reference point X in the fluid, while φ defines the
azimuthal angle subtended by the point rotlet ζ, acting
along the centerline. Choosing the unit-length a, the vec-
tor joining the reference point and the centerline becomes
R = X − ζ = (x,

√
r2 + 1 − 2r cos (φ− θ), φ − θ)cyl with

(...)cyl denoting the cylindrical coordinates with magni-
tude R given by

√
r2 + x2 + 1 − 2rcos(φ− θ). The veloc-

ity at point X generated by the distribution of the point
rotlets acting along the centerline can be obtained by in-
tegrating over φ. The velocity components are

ux =
∫ 2π

0

dφ

[
m
a− r cos(φ− θ)

R3

]
(10)

ur =
∫ 2π

0

dφ

[
mx

cos(φ− θ)
R3

]
(11)

uθ =
∫ 2π

0

dφ

[
mx

sin(φ− θ)
R3

]
. (12)

Since the rotlet is a special case of the fundamental so-
lution which is identically annihilated by the Laplacian
∇2u = 0, the pressure due to the rotlet, equation (6),
is a constant. The flow due to a rotlet is vorticity free
and it turns out to be a solution to both the Stokes and
potential flow equations. This explains the similarity of
results obtained in our work with the propulsion of vortex
rings [17,18].

The angular component of the velocity goes to zero by
symmetry. The velocities in equations (10) and (11) can
be integrated and easily expressed in terms of complete
elliptic integrals E(k) and K(k) (Appendix A), where k
is defined as, k2 = 4r/

[
x2 + (r + 1)2

]
.

The velocities in terms of these elliptic functions are
given by (Appendix A),

ux =
m(I3 − rI4)

C3
(13)

ur =
mxI4
C3

with C =
√
x2 + (r + 1)2 and I3 and I4 elliptic integrals

given in Appendix A. The latter is exactly the result
of [10].

In our analysis we consider external forces acting on
the torus, and analyze two additional singularities, the po-
tential dipole of strength dpx and the Stokeslet of strength
fx in the x direction. We now discuss the velocity due to
a ring of point forces and point dipoles, distributed along
the centerline. Consider the velocity due to a Stokeslet of
strength f which is given by

u =
(

I
R

+
RR
R3

)
· f . (14)

Here RR denotes the dyadic product, I is the identity
matrix and f is a point force vector. The pressure due to

a Stokeslet is given by

p =
2R · f
R3

. (15)

An axially symmetric situation is considered here, i.e.
a Stokeslet acting in the flow direction, x, and of con-
stant magnitude f so that f = fxex. The velocity is then
given by

u =
(

ex

R
+

Rx
R3

)
fx. (16)

Similarly as in the rotlet case , using R = X − ζ with mag-
nitude R =

√
x2 + (r + 1)2 − 4r cos2(φ/2), and integrat-

ing over the φ distribution of the ring of point Stokeslets,
we obtain

ux = f

∫ 2π

0

dφ

[
1
R

+
x2

R3

]
= fx

(
I1
C

+ x2 I3
C3

)
(17)

ur = fx

∫ 2π

0

dφ

[
r

R3
− cos(φ− θ)

R3

]
=
xfx(rI3 − I4)

C3

(18)

p = 2fx
∫ 2π

0

dφ

[
cos(φ − θ)

R3

]
=

2xfxI3
C3

. (19)

It is known that the Stokeslet and its higher derivatives
are solutions to Stokes equations [16]. Thus if G represents
a Stokeslet then ∇2G is also a solution to the Stokes equa-
tion and is called as the potential dipole. The velocity due
to a potential dipole can be easily derived as

u =
(

I
R3

− 3RR
R5

)
· d. (20)

Consider the distribution of potential dipoles along a ring,
acting in the x direction, such that d = dpxex, the x and
the r directional velocities are given by,

ux = dpx

∫ 2π

0

dφ

[
1
R3

− 3x2

R5

]
= fx

(
I3
C3

− 3x2I6
C5

)
(21)

ur = 3xdpx

∫ 2π

0

dφ

[
− r

R5
+

cos(φ − θ)
R5

]
(22)

= −3dpxx(rI6 − aI7)
C5

.

Note that there is no pressure contribution of the potential
dipole [16]. The net velocity resulting from the contribu-
tion of the rotlets, Stokeslets and potential dipoles can be
written as

ux =
m

C3
(I3 − rI4) + dpx

(
I3
C3

− 3x2 I6
C5

)

+ fx

(
I1
C

+ x2 I3
C3

)
(23)

ur =
mxI4
C3

− 3dpxx

C5
(rI6 − I7) +

xfx

C3
(rI3 − I4)

p =
2fxxI3
C3

(24)
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Fig. 3. Local parameterization of the torus.

where p is the pressure and has contribution only from
the Stokeslet. For a torus rotating with angular velocity ω
and translating with velocity Ux the boundary conditions
are ũx = ω(a − r̃) + Ũx and ũr = ωx̃ at the surface of
the torus. The non-dimensional boundary conditions thus
become ux = (1 − r) + Ux and ur = x. In the special
case of an immobile torus, we set Ux = 0. We further con-
sider here the case of a slender torus (the ratio of the two
radii of the torus, ε = b/a is small), and the surface is
locally parameterized by an angle ψ, such that x = ε cosψ
and r = 1 + ε sinψ (Fig. 3). This implies the expansion
k2 = 1− ε2

4 +O(ε3) in the slender torus limit. The asymp-
totic expressions for the elliptic integrals in the k = 1
limit (Appendix A) can therefore be used to simplify the
expressions. The boundary conditions demand a scaling ,
m = m0 ε

2, dpx = ε4dpx0 and fx = ε2fx0. The bound-
ary conditions for the x and r directional no slip velocity
conditions read as follows:

Ux− ε sinψ = −2εmo sinψ − ε2(mo+4dpxo−2fxo)
2

cos 2ψ

+
ε2

2

(
2mo(log

8
ε
− 1

2
) + 4fxo(log

8
ε

+
1
2
)
)

(25)

ε cosψ = 2 εmo cosψ − ε2(mo + 4dpxo − 2fxo)
2

sin 2ψ.

(26)
At O(ε), we get the strength of the rotlet as mo = 1

2 which
is the central result of [10].

Equations (25) and (26) also justify the use of only the
rotlet, the Stokeslet and the potential dipole in the expan-
sion since the boundary conditions can be satisfied using
these singularities. The higher order terms from these sin-
gularities can be balanced by additional singularities like
the r directional stokeslet, but we restrict the analysis here
to O(ε2).

Equations (25) and (26) can be solved in two situations
which we now discuss.

2.1 Calculation of the velocity of a force free rotating
torus

The velocity of a force free torus is obtained by substitut-
ing fxo = 0 in equations (25) and (26). The strength of the
dipole can be obtained from equation (26) as dpxo = − 1

8 .
Equation (25) indicates that the x velocity is given by

Ux =
ε2

2

(
log

8
ε
− 1

2

)
. (27)

This is the nondimensional translational velocity of a
freely rotating torus. The dimensional velocity of a ro-
tating torus with an angular velocity ω can therefore be
given by

Ũx =
ωb2

2a

(
log

8a
b

− 1
2

)
. (28)

which is exactly identical to the well known expression for
velocity due to an ideal vortex ring as predicted by the
potential flow theory [17,18]. This is expected because for-
mally a rotlet urot is also the expression for the velocity
field of an ideal line vortex. However, despite the kinematic
analogy between the twirling torus and an ideal vortex
ring, the physics behind is quite different. The propaga-
tion of an ideal vortex ring does not require any exter-
nal forces/torques and is governed by conservation of ki-
netic energy and momentum. In sharp contrast the low
Reynolds-number flow is governed by the dissipation in
the fluid, which is manifested as a local force and a lo-
cal torque acting on the torus. The rotating torus at low
Reynolds numbers has to constantly dissipate energy to
maintain its rotation as opposed to the inertia dominated
ideal vortex ring [17,18].

If we consider a rotating torus as a model of a self
propelled organism [3], the translational velocity is pro-
portional to the “internal velocity” ω and quadratic in
the ratio (b/a) in agreement with the previous results for
the models of swimming of microorganism [5,4].

2.2 Calculation of force on a non-translating torus

To calculate the velocity field due to a rotating torus,
prevented from translating by an external force, con-
sider equations (25) and (26). Here mo = 1

2 satisfies
the O( ε) equation. At O( ε2), the quantities dependent
on the angular parts can be balanced appropriately by
dpxo = 2fxo−mo

4 . The Stokeslet strength fxo can be calcu-
lated by equating the translational velocity to zero, and
the strength of the Stokeslet can now be easily determined
as

fx = − ε2

4

[
ln(8/ ε) − 1/2
ln(8/ ε) + 1/2

]
. (29)

The strength of the potential dipole is then given by

dpxo = −1
4

log 8
ε

log 8
ε + 1

2

. (30)
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The local stress tensor can be expressed as
T = [(σxx, σxr), (σrx, σrr)], where different elements of the
stress tensor have following definitions:

σxx = −p+ 2
dux

dx
(31)

σxr = σrx =
dux

dr
+
dur

dx
(32)

σrr = −p+ 2
dur

dr
. (33)

The traction vector (force per unit area) is t = Tn, and its
value in the x direction is given by exTn, where n is the
unit normal given by (cosψ, sinψ). The net force on the
torus is then calculated by integrating the traction over
the area of the torus given by

∫
dψ(1+ ε sinψ)2π ε. Thus

the net x directional non-dimensional force is given by

Fx =
∫ 2π

0

dψ(1 + ε sinψ)2πεtx = 4π2ε2
ln(8/ ε) − 1/2
ln(8/ε) + 1/2

(34)
and the dimensional force by

F̃x = 4π2µb2
ln(8/ε) − 1/2
ln(8/ε) + 1/2

. (35)

The main contribution to the force therefore comes from
the Stokeslet and has two parts: the skin drag due to vis-
cous stresses and the form drag due to pressure variation
around the torus. Unlike the case of a sphere where the
form drag is half the skin drag, it is found that for the
torus the two are of the same magnitude and given by
2π2 ε2 ln(8/ ε)−1/2

ln(8/ε)+1/2 .
The net torque on the torus about the centerline is

given by the moment of the tangential force which is given
by tTn about the center (lever arm ε)

Nc =
∫
dψ(1 + ε sinψ)2π ε(tTn ε)

= 8π2 ε2
(

1 − ε2
(

5
16

+
1
8

ln(8/ ε) − 1/2
ln(8/ ε) + 1/2

))
eθ (36)

and hence the net torque integrates out to zero. The di-
mensional, locally felt, torque is given by

Ñc = 8π2µb2a

(
1 − ε2

(
5
16

+
1
8

ln(8/ ε) − 1/2
ln(8/ ε) + 1/2

))
eθ

(37)
One should note though, that, to maintain the local torque
some form of internal driving mechanism of the torus is
needed, which is possibly provided by the metabolic ac-
tivity of the swimmer,or rectification of thermal motion
as in [8].

3 The boundary integral method (BIM)

The results in the slender limit are practically useful, es-
pecially, in the case of polymer rings and miniplasmids. It

would, however, be interesting to extend the results to the
case in which the torus thickness is of the same order as
the internal radius. For the motion of such a non-slender
torus it is necessary to revert to some kind of numerical
method. Here we use the boundary integral method which
is a singularity method and is best suited to solve Stokes
equations. The drag calculation (resistance problem) in-
volves solving integral equation of the first kind, which are
known to generate ill conditioned matrices [15], although
converged non-oscillatory solutions are reported in cer-
tain specific cases [19]. For force calculation in the torus,
we do get well behaved converged solutions which are in
good agreement with the analytical solution in the slender
torus limit. The calculations are then extended to the non-
slender limit. In fact, the analytical expressions reported
in Section 2 are multipole expansions of the complete in-
tegral equation, for force distribution, which can be solved
numerically using the boundary integral method [16]. Note
that multipole expansions are different moments of the
Stokeslet about the centerline of the torus [16].

The representation of the velocity by the boundary
integral equation can be written as

ui(x0) = − 1
4πµ

∫
dS(x)Gij(x,x0)fj(x)

+
1
4π

∫
dS(x)uj(x)Tijk(x,x0)nk(x) (38)

where Gij(x,x0) =
(

δij

r + xixj

r3

)
and Tijk(x,x0) =

−6 xixjxk

r5 where r = |x − x0| , S(x) is the surface area
of the body over which integration is carried out and nk

is the local unit outward normal to the surface. However,
the second term in this equation can be modified [15] to
avoid singular kernels and equation (38) can be solved nu-
merically if suitably modified (Eq. (73), discussed in Ap-
pendix C). We make use of the axisymmetry in the prob-
lem, akin to the analytical solution discussed in the earlier
section. The Greens functions are modified after integra-
tion in the azimuthal direction and are provided in several
references [15,16]. These are expressed in terms of elliptic
integrals of the first and second kind. In the above equa-
tion ui(x) is given by (Ux+(1−r), x). The unknowns fj(x)
are then solved for by numerically evaluating the integrals
by discretizing the arc length into numerous elements and
interpolating using cubic splines. The additional unknown
Ux is obtained by imposing the no-force in the x direction
condition which is

∫
dS(x)fx(x) = 0. The Greens function

exhibit − log r singularity as r → 0 that is x → x0. The
singularity is handled in the usual way [15] by subtracting
the singular part from the Greens functions and carefully
integrating it analytically. The force, arc length and all
other variables are also expressed as cubic splines. The
condition of no net x directional force (force free torus)
is enforced to get the unknown longitudinal translational
velocity. The comparison of the asymptotic and numeri-
cal solutions are discussed in the following section. In all
the simulations reported in this work, we have used 80 el-
ements for discretization. The simulations were repeated
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Fig. 4. Comparison of the analytical and numerical x and r
directional forces for a slender (ε = 0.025) torus ( , Fx(Num),
· · · , Fx(Anal), · ·, Fr(Num), , Fr(Anal)). Note that
the analytical and numerical results are identical and almost
indistinguishable.

with 160 elements and no significant difference was ob-
tained up to the third decimal place.

4 Comparison of analytical and numerical
results

The results derived for a freely rotating torus require a
force and torque free motion. However, locally at each
point on the torus, there is a finite force and torque acting
and analytical expressions can be easily obtained as t·T·n,
where T is given by equations described in section 2.2.

fx =
(16 + 6ε2 − 3ε2(cos 2ψ + log 64 − 2 log ε)) sinψ

8
− 2ε cos 2ψ

(39)

fr = −cosψ(16 − 6 ε2 + ε(−3 ε(cos 2ψ − log 64 + 2 log ε)
8

− 4 sinψ cosψ.
(40)

Note that both the forces when integrated over the sur-
face of the torus equate to zero, indicating a globally force
free, torque free torus. Figure 4 compares the numeri-
cal solution with the analytical expressions for the forces
(Eqs. (39, 40)) and shows a good agreement in the slender
torus limit. At higher values of ε, a deviation between the
numerical and analytical results is clearly seen (Fig. 5).

The main analytical results from the calculations is
equation (27) which gives the translational propulsion ve-
locity as a function of the angular velocity and the aspect
ratio of the torus.

Figure 6 shows the comparison of the analytical
(Eq. (27)) and numerical results for the translational ve-
locities. Interestingly, the analytical expressions are valid
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Fig. 5. Comparison of the analytical and numerical x and r di-
rectional forces for a non-slender (ε = 0.5) torus ( , Fx(Num),
· · · , Fx(Anal), · ·, Fr(Num), , Fr(Anal))
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for slenderness ratio as high as 0.5. This can be attributed
to the O(ε2) analysis carried out in the present work. For
a really “fat” torus, the translational velocities are lower
than those predicted by the analytical slender limit re-
sults. A “fatter” torus seems to be slower than that pre-
dicted analytically, which could be due to the hydrody-
namic interaction of the flow fields of various sections of
the moving torus.

5 Mobility and resistance matrices

Mobility and resistance matrices are commonly used in
describing the collective hydrodynamics of a group of par-
ticles, where the forces and the torques are related to the
translational and rotational velocities of the particles. The
resistance or the mobility matrices are dense, although
symmetric. However, for single particles, the matrices are



R.M. Thaokar et al.: Hydrodynamics of a rotating torus 331

often diagonal, indicating that the forces typically cause
translation and torques cause rotation. A torus is one of
the few bodies with a regular geometry in which a re-
sistance matrix can be written even for a single particle
(torus) due to the coupling of the torques and forces. Here
we derive a resistance matrix (Mkl) in terms of dimen-
sional quantities, relating the angular velocity ωc (about
the circular axis) and velocity ux (in the x direction) with
the corresponding external torque Ñc and force F̃x, so that

(
Fx

Nc

)
= 4π2µ

(
M11 M12

M21 M22

) (
ux

ωc

)
.

Combining the previous expressions obtained for Fx and
Nc (Eqs. (34) and (37)), together with the results for a
translating torus (Appendix B, [9]) for the drag on a rigid
slender torus, we obtain the entries for the mobility matrix
M at the leading order as:

M =
(
M11 M12

M21 M22

)
.

Such that

M11 = 2a(log 8/ε+ 1/2)−1 (41)

M12 = M21 = b2(log 8/ε− 1/2)(log 8/ε+ 1/2)−1

M22 = 2b2a.

Note that the symmetry of the resistance matrix is a gen-
eral feature of swimmers in Stokes flow and provides a
good check for the consistency of the involved calculations.

The numerical results for propulsion velocity in the
paper are in agreement with [14].

6 Motion of a torus along a cylindrical rod

It is interesting to study the motion of a torus along a
cylindrical rod, since the direction of motion can possi-
bly reverse as the diameter of the cylindrical rod is made
larger [7]. Such a setup has been suggested [8] in the case
of a nanomachine, essentially a DNA mini-plasmid, suit-
ably selected, so that it can be converted into a nanoswim-
mer. It was argued that although the mini-plasmid could,
under certain circumstances, self-propel, its effect can be
nullified by the substantial out of plane rotational dif-
fusion prevalent in these machines owing to their small
sizes [11]. It was therefore proposed to thread a DNA
through the center of the DNA miniplasmid thereby al-
lowing only unidirectional motion. This situation was first
addressed by Taylor [7], albeit qualitatively and the cal-
culations were not provided. In another study Cox and
O’Neil separately [12,13] obtained analytical solutions for
the case of a slender torus moving inside a tube, in two dif-
ferent parameter regimes: non-lubrication and lubrication.
They obtained the force on the torus when it is sliding
both inside as well as outside of an infinitely long cylinder.
However, there are no calculations to date which address
the motion of a force free, rotating torus along a circu-
lar cylinder, and its propulsion velocity, which is exactly

2 a

d=b δ

R=a−b−d
x

r d=b δ

2 a

2 b

2 R

2 b

Fig. 7. Schematics of a torus moving along a rod.

the proposed mechanism by [8] of a DNA mini-plasmid
on a track (Fig. 1b). The system can be best described
in cylindrical coordinates. We work here with dimensional
quantities and follow the same notation as that of [12].
Consider a torus (Fig. 7) translating in the x direction
with velocity U and rotating about its centerline with an-
gular velocities ω. The torus has smaller and larger radius,
b and a, and moves along an infinitely long inner cylinder
of radius R. We introduce two small parameters here, ε
and δ, such that the distance between the torus surface
and the cylinder d = a − b − R = δb and b = εa, which
correspond to lubrication limit of a slender torus. In addi-
tion, we describe the parameter β = R/a = 1− ε− εδ in
conjunction with the notations used in [12] and [13] such
that β > 1 indicates a torus translating inside a cylinder
and β < 1 denotes a torus moving outside an infinitely
long cylinder. For β < 1, β → 0 (R � a)indicates limit
of weak wall effect and β → 1 (R ≈ a) indicates presence
of strong wall effect. Suitable non-dimensional variables
described here are relevant only to this section. The equa-
tions of motion at low Reynolds number (taking advantage
of the azimuthal symmetry) can be written as:

1
r

∂(rur)
∂r

+
∂ux

∂x
= 0 (42)

−∂p
∂r

+ µ

[
∂2ur

∂r2
+

1
r

∂ur

∂r
− ur

r2
+
∂2ur

∂x2

]
= 0 (43)

− ∂p

∂x
+ µ

[
∂2ux

∂r2
+

1
r

∂ux

∂r
+
∂2ux

∂x2

]
= 0. (44)

The boundary conditions are the following: at r = R =
a − b − d, the velocity ux, ur = 0, and on the surface of
the torus ux = ω(a− r) + U, ur = ωx.

One of the motivations for earlier works on this con-
figuration [12,13] of a torus sedimenting inside a cylinder
was to explain the experimental results of a translating
torus [20]. The geometry was selected because the exper-
imental results showed deviation from the predictions of
a sedimenting torus in an infinite medium and the dis-
crepancy was attributed to the presence of the walls of
the cylindrical vessel in which the experiments were car-
ried out. In these studies, analysis was performed using
singularity method for two different regimes, β → 1 and
β → 0, which correspond to strong and weak wall effects
respectively. The work was also extended to the case of
a torus sedimenting on the outside and along the axis of
an infinitely long cylinder (β < 1) [12], which is also the
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Fig. 8. Comparison of the variation of the total force (F )
with β = R/a of [12] (◦) and the present BIM study (*) for a
sedimenting torus U = 1.0, a = 1.0, µ = 1.0, ε = 0.0005.

case in the present study, and again, both β → 1 and
β → 0 regimes were considered. The analytical expression
for the total force acting on the torus in the β → 1 is given
by [12],

F =
8π2aµU

ln 2(a−R)
b

, (45)

for the parameter regime ε < δ < 1. We use the boundary
integral method, described in the earlier section, to calcu-
late the drag force on the torus sedimenting along a cylin-
der. The only difference in this case is that the integration
is performed over both the torus and the cylinder areas,
axi-symmetry being still valid. The results of [12] are ver-
ified first, and comparisons made with the analytical ex-
pression (Eq. (45)). Typically, the infinitely long cylinder
was kept 80 times the larger torus diameter (a = 1) and
160 elements were equally distributed over the cylinder
and rod. The results were verified by doubling the length
of the cylinder and the number of elements.

Figure 8 shows the comparison of the results obtained
from the present BIM study with the expression given
by [12] (Eq. (45)). For ε = 0.0005, the results show a
very good agreement, however, for ε = 0.05 (Fig. 9, it
is found that the deviation is large especially for β → 1.
This is expected since the results of [12] are valid in the
limit ε < δ < 1, whereas for a given ε, δ → 0 as β → 1,
the assumption, ε < δ in [12] is violated. Note that β =
1− ε(1− δ). In the present work, we are interested in the
regime δ < ε < 1 for a torus rotating about its centerline
and translating along the cylinder axis. Thus, the limit
considered is one in which, the slender torus moves along
the cylinder at gap widths δ much smaller than the smaller
diameter of the torus.

At the leading order a torus rotating about its center-
line with a cylinder passing through its center is identical
to a rotating cylinder near an infinite wall in the lubrica-
tion limit. Therefore, a naive lubrication theory analysis
of this problem indicates that the torque on a translating
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Fig. 9. Comparison of the variation of the total force (F )
with β = R/a of [12] (◦) and the present BIM study (*) for a
sedimenting torus U = 1.0, a = 1.0, µ = 1.0, ε = 0.05.

torus along a cylinder or the force on a rotating torus is
zero. This is identical to the result obtained by [21] for a
rotating and translating cylinder near a wall exerting zero
force and torque respectively.

The numerical results however show that the force on
a rotating or translating torus about a cylinder is non-
zero [12,13]. The reason for this can be attributed to the
fact that unlike the case of a cylinder, the torus has a
finite length l = 2πa with a curvature of the order of 1/a
and has an internal degree of freedom.

We now extend the analysis to the case of a force
free torus, rotating at a constant angular velocity ω and
moving along the cylinder, using the boundary element
method. To solve for the force free torus, we adopt a
strategy similar to that for a single self-propelled torus.
The integral equation is solved for the unknown stokeslet
strength fi with an additional constraint that the net
force vanishes

∫
dS(x)fi(x) = 0. This extra equation al-

lows the calculation of the unknown propulsion velocity
Us. To describe the results in a compact way, we nondi-
mensionalise the lengths as earlier with the outer torus
diameter, a and the velocities are with aω. We report the
force free translational (propulsion) velocity scaled by the
non dimensional single torus (in an infinite fluid) velocity
Us = ε2/(log(8/ε) − 1/2) so that U∗ = U/Us. Figure 10
indicates that the torus undergoes reversal of direction
as the thickness of the inner cylinder increases. At small
thicknesses of the cylinder (β → 0), the torus is propelled
by the theory discussed earlier for a single rotating torus
indicated by U∗ = 1. However even for very small thick-
nesses of the cylinder, substantial deviations are observed
from that of a freely rotating torus which is typical of
Stokes flow. As the thickness of the inner cylinder is in-
creased the translational motion reverses and the torus
now starts moving in the opposite direction (β → 1).
This is the rolling motion observed for force free rotat-
ing objects near a solid wall (Fig. 12). To get the correct
scaling of rotation in the lubrication limit, we carried out
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Fig. 10. Variation of the scaled translation velocity with the
the scaled cylinder thickness for slenderness ratio ε = 0.05,

ε = 0.25.

simulations in low gap limit in dimensional quantities. Fig-
ure 11 shows the variation of the dimensional translational
velocity as a function of the gap distance for two different
tori diameter a = 1 and a = 2. The velocity is seen to
vary as

U = bω

(
1 − 3

2
d

b

)
(46)

where d = bδ is the dimensional separation. The result
indicates that the rolling velocity is independent of the
torus diameter. This can be compared with the result for
the rolling of a force free sphere of radius a for which
the translational velocity goes as U = aω/4 [22] and the
deviation from aω by a factor of 4 is described as the
slip, a result discussed in details in the literature. The
force free cylinder on the other hand does not show any
translation [21]. The numerical results for the torus show
a clear scaling of U ∼ bω for the translational velocity in
the limit of separation d→ 0.

7 Conclusion

The paper presents analytical and numerical calculations
for a rotating torus. The analytical results are valid up
to O( ε2) in the slenderness ratio. The calculations reveal
that a rotating torus can translate. The reason for this can
be attributed to the presence of non-zero non-diagonal
terms in the reduced mobility and resistance matrices.
The expression for the translational velocity is identical
to that of translating smoke rings in inviscid flow. Such a
translating torus is force free and torque free. The force
and torque required to prevent the translation of a rotat-
ing torus is also calculated. The results of slender torus
are extended numerically to finite aspect ratio using the
boundary integral method. It is found that the analyti-
cal expression provided is correct to a slenderness ratio as
high as 0.2 which is attributed to the O(ε2) analysis. The
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Fig. 11. Comparison of dimensional translational (Rolling)
velocity in the lubrication limit for two different inner diame-
ters of a torus (b = 0.05, a = 1, a = 2, · · · · · · Best fit
U = 0.05 b(1–3/2 d/b)).

a b c

Fig. 12. Schematic of transition from propulsion to rolling
regime, (a) propulsion of a free torus, (b) propulsion of a torus
moving along a cylinder, (c) rolling of a torus along a cylinder.

local forces and torques are also calculated. Finally the
mobility matrix for the rotating-translating torus is pro-
vided. The results would be of immense use in calculating
the friction and writing the correct Langevin equations for
DNA mini-plasmids of different slenderness ratio which is
the subject of our future publication. The results for the
motion of a slender torus along a cylinder show that the
torus can undergo reversal of translational motion from
a propulsion type to rolling when the internal diameter
of the cylinder is changed. Interestingly, the translational
velocity is found to be independent of the size of the torus
in the lubrication limit.

We thank one of the referees for bringing to our notice a similar
work [14]. The authors in that paper have addressed propuslion
of a Purcell’s swimmer using toroidal coordinates. The final re-
sults are obtained in a numerical fashion and are in agreement
with the results of our present work. The emphasis in the afore-
said work though is on the efficiency of such a swimmer and
comparison of a toroidal swimmer with a similar object made
from a collection of rotating spheres.



334 The European Physical Journal B

Appendix A: Elliptic Integrals

The complete elliptic integrals are defined as [23]:

F (k) =
∫ π/2

0

dθ√
1 − k2 sin2 θ

(47)

E(k) =
∫ π/2

0

dθ
√

1 − k2 sin2 θ. (48)

The elliptic integrals have the following asymptotic ex-
pansion around k = 1,

F (k) =
1
2

ln
(

16
1 − k2

)
(49)

E(k) = 1 +
1 − k2

2

(
ln

16
1 − k2

− 1
2

)
(50)

and around k = 0, the asymptotic expression reads

F (k) =
π

2
+
π

8
k2 +

9πk4

128
(51)

E(k) =
π

2
− π

8
k2 − 3πk4

128
. (52)

I1 =
∫ 2π

0

dθ√
1 − k cos2 θ/2

= 4F (k) (53)

I2 =
∫ 2π

0

cos θ√
1 − k cos2 θ/2

dθ =
4
k

((2 − k)F (k) − 2E(k))

I3 =
∫ 2π

0

dθ
3
√

1 − k cos2 θ/2
=

4
1 − k

E(k)

I4 =
∫ 2π

0

cos θ
3
√

1 − k cos2 θ/2
dθ =

4
k

(
2 − k

1 − k
E(k) − 2F (k)

)

I5 =
∫ 2π

0

cos2 θ
3
√

1 − k cos2 θ/2
dθ

=
4
k2

(
k2 − 8k + 8

1 − k
E(k) − 4(2 − k)F (k)

)

I6 =
∫ 2π

0

dθ
5
√

1 − k cos2 θ/2

=
4

3(1 − k)

(
2

1 − k
(2 − k)E(k) − F (k)

)

I7 =
∫ 2π

0

cos θ
5
√

1 − k cos2 θ/2
dθ

=
4

3k(1 − k)

(
2

1 − k
(1−k+k2)E(k)−(2−k)F (k)

)

I8 =
∫ 2π

0

cos2 θ
5
√

1 − k cos2 θ/2
dθ =

4
3k2(1 − k)

×
(
(8−8k−k2)F (k)− 2(2−k)(2−2k−k2)

1−k E(k)
)

I9 =
∫ 2π

0

cos3 θ
5
√

1 − k cos2 θ/2
dθ

=
4

3k3(1 − k)

(
2

2 − k
(k4+k3−33k2+64k−32)E(k)

)

+
4

3k3(1 − k)
(−(2−k)(k2 + 32k−32)F (k)

)
. (54)

Appendix B: Analytical solution
for a translating, non-rotating torus

The force and torque acting on a translating torus was cal-
culated by Johnson [9], apart from several other results.
We rederive these equations using the method outlined
here and arrive at the same results. The method described
is general enough and can be easily extended to the calcu-
lation of hydrodynamic interaction between two tori which
is a subject of our future publication.

Constructing velocity profiles for a translating torus

For a torus translating in the x direction with velocity
U , we scale the lengths by a, the velocity with U , time
by a/U , the stresses and the pressure by µa/U . The θ
component of the velocity goes to zero by symmetry. The
velocities are easily expressed in terms of complete elliptic
integrals with a ring of Stokeslet, dipoles and rotlets as

ux =
m

C3
(I3−rI4)+dpx

(
I3
C3

−3x2 I6
C5

)
+fx

(
I1
C

+x2 I3
C3

)

(55)

ur =
mxI4
C3

− 3dpxx

C5
(rI6 − aI7) +

xfx

C3
(rI3 − I4)

p =
2fxxI3
C3

. (56)

where p is the pressure due to the Stokeslet.
The boundary conditions for the problem are ũs

x =
U and ũs

r = 0 at the surface of the torus. The non-
dimensional boundary conditions become us

x = 1 and
us

r = 0. We consider here the case of a slender torus (the
ratio of the two radii of the torus, ε = b/a is small), and
the surface can be locally parameterized by an angle ψ,
such that x = cosψ and r = 1 + ε sinψ. The boundary
conditions demand a scaling, m = m0ε

2, dpx = ε2dpo, and
dpo = fx/2, with fx = O(1). The boundary conditions are
given by,

us
i = ui(S) (57)

∫ 2π

0

dθ(x× us
i ) =

∫ 2π

0

dθ(x × ui(S)), (58)
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where us
i is the velocity on the surface of a torus Uex.

Integrating equation (57) leads to,

U = fo

(
1 + 2 log

8
ε

)
, (59)

such that,

fo =
U

(1 + 2 log 8
ε )
. (60)

Similarly, the strength of the rotlet is obtained by inte-
grating equation (58) over the surface of the torus. The
method is similar to deriving Faxen’s second law for a
sphere [24] and requiring that the velocity on the surface
is us

i = Uex gives,

m0 = −f0
log 8

ε − 1
2

. (61)

Calculation of force and torque on a translating torus

The stress tensor is expressed as T =
[(σxx, σxr), (σrx, σrr)], where the different elements
of the stress tensor have following definitions:

σxx = −p+ 2
dux

dx
(62)

σxr = σrx =
(
dux

dr
+
dur

dx

)
(63)

σrr = −p+ 2
dur

dr
. (64)

The traction vector (force per unit area) is t = Tn, and
the traction in the x direction is given by ex · Tn, where
n is the unit normal given by (cosψ, sinψ). The net force
on the torus is then calculated by integrating the traction
over the area of the torus given by

∫
dψ(1 + ε sinψ)2π ε.

Thus the non-dimensional net x directional force per unit
center line length (2π) is given by

Fx =
∫ 2π

0

dψ(1 + ε sinψ)2πεtx = − 16π2

1 + 2 log 8/ε
(65)

and the dimensional force is given by

F̃x = − 8π2aµU

log 8
ε + 1

2

. (66)

The net torque on the torus about the centerline is given
by the moment of the tangential force which is given by
tTn about the center (lever arm ε)

Nc =
∫
dψ

(1 + ε sinψ)2πε
2π

(tTnε) = 4π2ε2(f0 − 4m0)

= 4π2 ε2
log 8/ε− 1/2
log 8/ε+ 1/2

(67)

and the total dimensional torque is given by

Ñc = 4π2µb2U
log 8/ε− 1/2
log 8/ ε+ 1/2

. (68)

Expressions (66) and (68) are the central results of [9].

Appendix C: Derivation of boundary integral
equation

The basic equation for velocity at a point in flow over a
particle, when the point lies outside the particle is given by

ui(x0) = − 1
8πµ

∫
dS(x)Gij(x,x0)fj(x)

+
1
8π

∫
dS(x)uj(x)Tijk(x,x0)nk(x). (69)

The first integral is called as single layer potential, whereas
the second is called the double layer potential. When the
singular point is moved on to the surface, the equation is
modified as

ui(x0) = − 1
4πµ

∫
dS(x)Gij(x,x0)fj(x)

+
1
4π

∫
dS(x)uj(x)Tijk(x,x0)nk(x). (70)

The singularity in the double layer potential can be elim-
inated by re-writing the equation as

ui(x0) = − 1
4πµ

∫
dS(x)Gij(x,x0)fj(x)

+
1
4π

∫
dS(x)(uj(x) − uj(x0))Tijk(x,x0)nk(x)

+ uj(x0)
1
4π

∫
dS(x)Tijk(x,x0)nk(x). (71)

Using the property of double layer potential,
∫
dS(x)Tijkx,x0)nk(x) = −4πδij (72)

the governing equation can be re-written as

ui(x0) = − 1
8πµ

∫
dS(x)Gij(x,x0)fj(x)

+
1
8π

∫
dS(x)(uj(x) − uj(x0))Tijk(x,x0)nk(x). (73)

In the present work, it was found that the contribution of
the second integral increases as the slenderness ratio ε in-
creases. This is understandable as the assumption of rigid
body approximation becomes more invalid with ε. How-
ever, the absolute contribution of the second integral was
found to be minimal and results were affected by around
1% (if the second integral was neglected) even in the case
of a torus of thickness ε = 0.8. The change was less than
0.1% for slender tori (ε < 0.05)
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